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THEORY OF NOISE IN A MULTIDIMENSIONAL SEMICONDUCTOR
WITH A P-N JUNCTION

Prepared by:

Max Solow

ABSTRACT: This thesis discusses the fluctuations of noise
in a two and three dimensional semiconductor containing a
p-n junction. We consider a rectangular parallelepiped
single crystal. It is bisected in the longesL dimension by
a p-n junction. Since this dimension is several diffusion
lengths it can be considered infinite. In the transverse
plane we investigate the case where both dimensions are
finite, and then the case where one is finite and the other
infinite. In the p-n junction the noise is the result of
fluctuations in the minority carrier density. In a p-n
junction there are two classes of minority carriers: 1.
holes in the n-type material, 2. electrons in the p-type
material. Since both hole and electron density fluctuations
are similar, we discuss only the former in detail. We
investigate the differential equations for a two and three
dimensional semiconductor with a p-n junction and find the
inhomogeneous form of these equations. These equations are
solved with the help of the scalar and tensor Green's
function. The noise problem is solved by using these
equations as Langevin equations and interpreting the dis-
tributed sources as random forces. Then the noise current
spectrum is determined with stochastic process theory after
deriving the sources from basic physical models and the
theory of stationary, ergodic, Markovian processes. We

U. S. NAVAL ORDNANCE LABORATORY
WHITE OAK, MARYLAND
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consider two cases of surface recombination velocity on the
transverse surfaces: infinite s and finite s. For the
infinite case, we get the exact solution which provides an
upper bound for the noise spectrum for large a. For an
arbitrary s we get a solution but have conridence in the
solution for only small s.

Therefore we have obtained a complete solution for t.he two
cases of practical interest: large and small surface
recombination velocity. These cases should prove of interest
in the analysis of noise phenomena in semiconductors.

ii
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This report describes a theoretical study of the fluctu-
ation noise from a two and three dimensional semiconductor
with a p-n Junction. It was carried out as a thesis
problem with partial support from FR-21. The report is
for information only.
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CHAPTER I

INTRODUCTION

Semiconductor noise studies give useful
information about the basic physical micros-
copic processes in semiconductors and in the
solid state. Furthermore, noise becomes very
inportant when a semiconductor devine such as
a transistor is used with signal levels com-
parable to the noise.

A semiconductor crystal which is p-type
at one end and n-type at the other has a
transitiop zone which is called a p-n junction
(Shockley , KittelO). Current is carried
across the Junction by minority carriers; that
is, electrons in the p-type region and holes
in the n-type r~gion.

Petritz3,- has shown that noise in a
p-n junction arises from fluctuations in the
concentration of minority carriers. Consid-
ering a p-n junction as an ideal one dimen-
sional structure, he has derl ed expresaions
for this noise. Van der Ziel' has extended
the solution to the one-dimensional p-n-p
transistor structure. In both studies the
effects of surfaces were considered in an ap-
proximate manner.

However, surface conditions have been
found to influence markedly the performance o0
p-n Junction diodes and transistors (Kingston°).
Considerable theoretical work has been done to
understand the signal properties (voltage, cur-
rent, frequency relations) of p-n Junction
devices, consi ered as three-diRensional 6truct-
ures (Shockley , Van Roosbroecku). It is the
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purpose of this thesis to develop a theory of
noise which considers the p-n junction as a
three dimensional system, and which treats the
effects of surfaces in an exact manner.

A second objective of the thesis is to
test and extend a powerful method developed by
Petritz3, 4 for studying complicated random
processes. This aspect of the work is of inter-
bst in the general theory of random processes.

2
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CHAPTER II

PROBLEM AND METHOD OF SOLUTION

2.1 Introduction

We assume that semiconductor noise is a

stationary, ergodic and Markovian random process.3Considering the local hole density, pt(X,y,z,t).,
as a random variable, this is a three-fold infin-
ite random process. In order to solve suchacomplicated problem, we have generalized a method
used originally by Petritz. 3 Thia method employs
the Kolmogorov- -Fokker-Planck (KFP) and the
Larnevin techniques to describe the noise (Fe4-
le0, ChandrasekhayI 0 , Uhlenbeck and OrnsteinII ,
Wang and Uhlenbeck 2).

2.2 The Kolmogorov-Fokker-Planck Equation Approach

The KFP equations 1 2 for the three dimensional
semiconductor are given by

P(m /m,t) is the conditional probability of
finding the random variable with a value m after
the time t, If at zero time the random variable
had a value mo. The random variable is the hole
density in the n-type semiconductor. The symbol
r represents r(x,y,z),a function of the three
rectangular coordinates. is a transition
probability and is deflned2 by the equation,

p(It) (Tn,)m't t order (ht). (2)

3
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Q describes how the system changes in A, Infin-
itesimal interval of time, At, and characterizes
the stochastic process. For the semiconductor
problem, Q is independent of time and the pro-
cess is stationary. Q is non-zero and less than
unity and the process is ergodic.

The lnterpretatlon of equation (1) is that
the rate at which the conditional probability
P(m./m,t) changes with time results from transi-
tions away from and to the desired state. Equa-
tion (1) is subject to the boundary condition

where 8,,.is the Kronecker delta.
Since a random process is characterized by

transition probabilities, we list them for the
p-n junction:

q m -O 1m(r)/'C , bulk recombination; (11)

( + 4 /bulk emission; (5)

bulk diffusion (6)
Q(ý,r)[m(r)-%)= xn(r-/'p, decrease;

Sbulk diffusion (7)
increase.

At the transverse surfaces, the surface transi-
tion probabilities are

Q(ri(r)l•(%-1)= mts'/'4 , surface recombin- (8)
ation;

Q(mT(iA (rq) =) (rIm)/• ( , surface emission. (9)

rs denotes that the random variable is evaluated
only at the surface; r is the bulk recombination
lifetime of a hole in an excited state; •D and
Ts designate the lifetime of bulk diffusion
and surface recombination respectively;

L+
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and ) designates ensemble average. For a
atationary random process, time and ensemble
averages are equal.

The KFP equations with the set of transi-
tion probabilities given in equations (1) and
(4) to (9) comprise a three fold infinity of
differential equations, since p•rt) depends
continuously on x, y and z. We have not solved
this complete set of equations, but we later use
some KFP equations to solve the noise in an
infinitesimal region of the semiconductor.

2.3 The Langevin Equation Approach

The Langevin equation is a deterministic
equation ?f a system excited by random noise
sources.1 For a particle in a viscous medium
it is

where u is the velocit of the particle, P is
the viscosity, and A(t) is the random force.
The two assumptions made are that A(t) is inde-
pendent of u and that A(t) varies extremely
rapidly compared to the variation of u.

By generalizing the above concept we have
a suitable method for solving the p-n junction
noise problem. The determin stic equationa for
minority carrier flow are:1,J

S~+ q
'C(ni)

(rt) ,upt (r~t E (CA: -

Ttie subscript t denotes the total hole density,
I is the current density,E is the electric
field intensity, pj.t) is the hole concentration
at v(jXIZ) at time t,# is the hole mobility, p,,
is the hole concentration at thermal equilibrium,
1 is the mean lifetime of a hole in bulk n-type

5
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semiconductors,D is the diffusion constant, and
q is the electronic charge. We assume that the
diffusion current is much greater than the con-
duction current. By introducing appropriate
noise sources into the above equations we have
the three dimensional generalization of the
simple Langevin equation (10):

+ +-~1,)±Li-j (01) z ~(r,tz) 13
' q (13

S and SD are noise sources. The variable p is
t~e deviation of the hole density from its equil-
ibrium value, like Eq. (BI). (A letter preceding
an equation number indicates the appendix in
which the equation is found.)

It is important to note that there exists
no a priori knowledge of the noise sources;
their solution is a key part of this work.
After finding expressionb for these noise
sources, we solve the deterministic Eqs. (13) and
(14) and find the noise spectrum of the p-n junc-
tion. The latter step involves the use of scalar
and tensor Green's functions.

:6
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CHAPTER III

THREE-DIMENSIONAL NOISE SOURCES

FOR A p-n JUNCTION

3.1 Introduction

It is necessary to derive explicit
expressions for the noise sources appearing in
equations (13) and (14). We consider the anal-
ogous but considerably simpler problem of a
one-dimensional transmission line.

3.2 The Inhomogeneous Transmission
Line Equations13

The homogeneous differential equations
for a one-dimensional transmission line with no
series inductance are

allt

I is the current flowing in the line; V is the
voltage across the line; C, 0 and R are the
capacitance, shunt conductance and resistance
per unit length of line respectively. An infin-
itesimal section of line is shown in Ygure 1,
page 8. Taking the Fourier transform of the
voltage and current (either represented by F) we
have

7



NAVOD Re~rt5762

+ 4J

10

H ca

aj 00

I 4J CO,

cu 0

CD 0 d) A
(U 4"-ý

4ri ri)

0 ý

HH0

(D ..

48 M:

4-Iý0IH -Iu)cc



NAVORD Report 5762

a i ouc (C+C V-Y (18)

(19)

I and V are functions of frequency, f, and
position, x.

We now consider voltage and current
sources (generators) in the line; the total
source in the serics arm is AVo(xf)/Axo, while
in parallel with the admittance Y 'Pis a current
source Alo(xf)/Ax. In the limit as Ax ap-
proache.: zero, we have

where Fo(x,f) represents either Vo(x,f) or
Io(x,f). The resulting lnhomogeneous trans-
mission line equations are

Z)I + -ýV= 1 a(23)
4-f - -R 6Y '(4

5.5 Analogy between the Transnmision Line
and the One Dimensional p-n Junction

The three dimensional p-n Junction, Eqs.
(13) and (14), reduce to one dimension when the
functions considered are constant In the y and
z directions. Using Fourier transforms, Eqs.
(15) and (14) become

9
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4 )y ' (25)

- + a '(26)

= (.+ cw)/D <. (27)

Here J and p are functions of frequency and x.
The quantities in Eqs. (25)and (26) analogous
to those in Eqs. (23)and (24) are

j-'j ; R~ '/ ; (28)

e-' -! ; (29)

3.4 The Three Dimensional Inho2ogeneous
Differential Equations for a

Semiconductor with
a p-n Janction

Since the current density is a vector and
the excess hole density is a scalar, there are
four more equations like (25) and (26) for the
y and z directions. These six equations can be
written as

+~(,32)

107: + j lo, W)

10
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When the variables are separated, we get

(34)
+, /T (35)

- (36)

VV~jo D " (37)

3.5 Discussion of the Random Noise Sources

In the first order differential equations
(32) and (3) there are two sources of noise:
V*j and 1p.. The first is the divergence of
the hole current and is a scalar source. This
is due to hole recombination with electrons.
The second noise source is the gradient of the
hole density, Vp. , and is a vector source. Tjhe
diffusion current density is proportional to Vpo0
and is in the direction from greater to lesser
hole density.

In addition to the above noise sources
there are sources which result from the recom-
bination or emission of holes in surface states.
This noise is related to the flow of holes into
the surface and is directed normal to the sur-
face.

The modified noise sources, Sý and Sý ,
Eqs. (35) and (37), are not new sources but
result from mathematical operations on the physi-
cal sources.

3.6 Method of Deriving the Noise Sources

We derive explicit expressions for the
noise sonrges foulowing the method first used by
Petritz. , This method uses the KFP equation to
solve for the spectrum of the noise in an

11
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infinitesimal region of the semiconductor.
Then an appropriate deterministic equation
with unknown noise sources is set up for the
same infinitesimal region (local Langevin
equation). Knowing the spectrum from the KFP
solution, one is able to derive expressions for
the noise sources appearing in the local Lange-
vin equations. These sources turn out to be
appropriate for use in the Langevin equations
of the whole semiconductor, Eqs. (34) to (37).

3.7 Models Used for Determination
of Noise Sources

The determination of the noise sources
is simplified because of the assumption of
statisticai independence of the various elemen-
tary processes. To set up a model which Iolates
each source, we cut the three dimensional semi-
conductor into infinitesimal cubes without
changing their hole density and apply the appro-
priate boundary conditions. For recombination
the cube is an interior one with perfectly
reflecting boundaries. The charge density
remains uniform throughout; the only decay is
due to the bulk recombination time constant
since diffusion currents require gradients.

For the bulk diffusion sources the cube
is an interior one with perfectly absorbing
boundaries on two opposite faces and perfectly
reflecting boundaries on the other faces. The
volume is so small that the concentration grad-
ients cause large diffusion currents while
relatively few holes are lost by recombination.

For the surface recombination noise source,
the cube is at the surface of the semiconductor.
Its dimension perpendicular to the surface is
very small compared to the others and the bound-
aries are perfectly reflecting except for the
original semiconductor boundary. In this sur-
face element the dominant process is recombina-
tion and emission from the surfane itatves.

12
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Because of the thinness of the element, bulk
recombination and diffusion are relatively
unimportant.

3.8 The Bulk Recombination Noise Source

The excess hole density Langevin equation
for bulk recombination and emission is obtained
from the model in Section 3.7 and from Eqs. (10)
and (13),

+ (38)
'u q

The random force is Oq . The time constant
for bulk recombh1ntion T determines the transi-
tion probabilities)

Q•(NiN-'•=N/•, bulk hole-electron (39)
recombination;

(NIN+1)= (X)/ T', excitation of a (40)

hole.

Here N and <N) are the total and the average
number of holes in the cube respectively. The
minority charge density is assumed uniform over
the volume v of the cube, thus

N= V Pt" .(41)

Substituting these transittoo probabilities into
the KFP equation (i), we get for the small vol-
ume under consideration,

A PAIVI -P Xfit EN 01(42)
+ P (If,,N +1,Q [Nt+]

Multiplying equation (42) by N, the number of
holes at time t if No existed at the Initial
time, and summing over the ensemble, there
results

13



NAVORD Report 5762

a <NJ)./• <> (43)

NI=N- (44)

and where the conditional average for N is
defined as

The solution of equation (43) is

OPo = Nt/,) , (46)

where N1 0 is defined with the aid of Eq. (3) as

<N1%,- Njo) t-o . (47)

This conditional average is transformedinto the correlation function using3

=N1(t-t> • (48)

with equation (45) this expression becomes

p(A)•jjN±0 1(NLo) 0N) . (49)

W(NIO) is the probability of NlO. When Eq. (46)
is substituted into (49), the correlation func-
tion bhnomes

pet= <M o •(-t/e)• (50)

The Wiener-Khintchine Theorem3 transforms
the correlation function into the spectrum

1~4
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wcut CIL (51)

When equation (50) is substituted into equation
(51) and the result integrated, there results

K2 is defined by Eq. (27) and the symbol(l means

absolute value.
Equation (52) is the spectrum of the total

hole variation. However, we desire an expres-
sion for the noise source which appears in the
tLangevin frequency equation (34). We can solve
for the spectrum of the source now that we have
determined the spectrum of the total hole varia-
tion. This is the inverse of what is normally
done with the Langevin equation. The normal
procedure is to postulate a white noise source
and to solve for the fluctuations in the total
hole density. The magnitude of the white noise
source is determined by considerations of statis-
tical mechanics and thermal equilibrium. Since
we are interested in non-equilibrium as well as
thermal equilibrium noise sources, we cannot
use this normal procedure. Instead the local
KFP equation Is used to determine the thermal
equilibrium and nonequilibrium spectrum of the
total hole variation, and the noise sources
derived have general validity. This combined
use of the KFP and the Lapgevin methods locally
was first done by Petritz) and appears to be a
powerful technique for solving complicated ran-
dom processes.

We use this technique to transform the
spectrum of the total hole variation, Eq. (52),
into the noise source associated with the recom-
bination dissipative process. This is done by
integrating equation (38) over the volume of the
cube; inserting

15
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Ni = jpj(t,,v (53)

where pl(r) is like pl(O), Eq. (13); using

d-, v ; (54)

and using Eq, (17). This yields

Ir= cDK N, * (55)

The spectrum of I isr

W~l;l q4DIK41I W(,NI). (56)

Equation (52) substituted into Eq. (56) obtains

1r(1MX)= 4-0.• '/' • (57)

This is the noise source associated with the
recombination dissipative process. It is inde-
pendent of frequency and therefore is a white
noise source.

Equation (57) is not the recombination
noise source in equation (05). This source is

w(Is¢)= ,,(•-•' ).(58)

A relation between Eqs. (57) and (58) is
determined with the equation

Limn. -rz
AV-,0Ao (59)

and the generalized impedance theorem.

16
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The impedance theorem (Lawson and Uhlen-
beck1 5 ) states that by multiplying the current
noise spectrum wi in a linear system by the
absolute value squared of its impedance function,
Z(f)Z*(f), wi is transformed into the voltage
spectrum wo. In symbols

Wo= wi ZZ*. (60)

We generalize this impedance theorem by
letting w and w be any two spectra in a linear
system which areorelated by a factor of propor-
tionality Z(f)Z*(f).

The explicit expression for the recombin-
ation source spectrum is

I$I) NA~&' (61)

To express the recombination source, Eq.
(61), in known parameters, (Niz) is evaluated
by multiplying Eq. (42) by N' and summing; the
result is

(62)

When the time of observation of N goes to infin-
ity,

since

<N). = (0). (64)

With Eqs. (63) and (41) Eq. (61) becomes

4 O'S1) 4.rt 't dYv) (65)

17
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where <pt(r)> is given by Eq. (BII). Trhis ib

the desired noise source for bulk recombination.

3.9 The Diffusion Noise Source

Solving Eqs. (13) and (14) for p,
letting.Sr buzero and using the model for the
diffusion noise source, Section (3.7), we get

g 14_ý' =(66)

where xi is x, y, or z. We assume that diffusion
in the three directions is statistically inde-
pendent. Equation (66) becomes a set of three:

(67)

where u stands for x, y or z.
To write equation (66) in the Langevin

form, the spacial term is transformed to contain
a time constant. We write the second derivative
for the finite but small cube and use the densi-
ties

(-oP , p(0)= .o, p.)(ap. (68)

In this differentiation the diffusing direction
is u and the length of the cube in this direction
is Au. The second derivative is

(69)

and equation (67) becomes

(70)
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where (71)

With these time constants the transition
probabilities for the u direction are

loss by diffusion; (72)

SQD=(�pe1t) -(N,/'t• , gain by diffusion. (73)

Here N is the total number of holes in the cube
with dimensions Ax, Ay, Az and with the diffu-
sion boundary conditions:

fDS div = AX (74)

Using the techniques of the previous sec-
tion, the noise source for diffusion in the u
direction is

I~SAY K4 4 nP*.(r)>/a% and d.'L (75)

I. 3.10 The Surface Recombination Noise Source

With the model for the surface recombina-
tion noise source, Section 3.7, the Langevin
equation (10) becomes

+ EýL(76)

The 'pi is evaluated at the semiconductor
boundary and the j is the current flowing in

19
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Sth direction normal to the surface i. These
surface recombination time constants define the
transition probabilities:

(77)V by recombination at the surface;

by emission at the surface .

Ns is the total number of minority carriers
evaluated at the surface if the surface layer
were Axi thick:

Using the techniques demonstrated in Sec-
tion 3.7, the surface recombination noise source
is

is /nt )= &-fx , (80)

where i and k are either the pair y, z or z, yi
s is the surface recombination velocity and is
assumed to be the same on the y and z surfaces.
The relation for the surfa g recombination vel-
ocity is given by Rittner,

S- (81)

The rate of surface recombination acts as if a
current of holes were drifting into the surfae
with an average velocity s and being removed.•

5.11 Noise Source and p-n Junction Equations

The two bulk sources in equations (65) and

20



NAVORD Report 5762

(75) are expressed per unit volume. Since the
differential equations are for a small volume
of the three dimensional semiconductor, the noise
sources are in the correct form. That these
sources correspond to physical processes was also
shown by analogy with the transmission line,
Section 3.3.

When the variables are separated in the two

first order semiconductor equations, spacial
differential operations are performed on some
of the noise sources. This changes their nature
from those calculated in Sections 3.8 and 3.9.
In the equations for excess hole density (34)
and (35) the nature of the recombination source
Sr is not changed and these equations can be
solved for the recombination noise spectrum.
However, the diffusion source SD hap been dif-
ferentiated spacially and becomes S'. By using
the vector analogue of integration Ey parts, the
diffusion noise source transforms to the correct
form. This technique is used in Chapter VII.

In the diffusion current density equations
(36 and (37) the diffusion source is still BD.
These equations can be solved for the diffusion
noise spectrum with the tensor Green's function.
This approach is followed in Chapter V1.

21
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CHAPTER IV

SCALAR INHOMOGENEOUS SEMICONDUCTOR EQUATION

AND GREEN'S FUNCTION

I 4.1 Formal Solution of the Scalar
Inhomogeneous Equation

Having derived explicit expressions for
the noise sources, we consider the inhomogeneous
"differential equations for the semiconductor with
a p-n Junction, Eqs. (34) to (37). Green's func-
tions are useful for solving inhomogeneous partial
differential equations. In our problem we use
both scalar and tensor Green's functions, the
latter because of the vector nature of the
sources in Eq. (36). A summary of the proper-
ties of scalar and tensor Green's functions Is
given in Appendix A.

The formal solution of Eq. (34) in terms
of a scalar Green's function is, 1 *

WSLGi rpV+ fS(r U (82)

Throughout the paper the zero subscript denotes
the source coordinates, while the coordinates
without subscripts are the observation ones.
The surface integral gives the contribution for
noise sources at the surfaces, while the volume
integral Is for the volume sources.

22
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4.2 General Discussion of
Scalar Eigenfunctions

We construct an explicit expression forthe scalar Green's function in terms of a series

of scalar elgenfunctions. An eigenfunction is
the solution of an ordinary homogeneous differ-
ential equation containing a separation constant
which satisfies simple boundary conditions. The
values of the separation constants which allow
the eigenfunction to fit the conditions arecalled eigenvalues. In physics it is assumed
that the Dirac-delta function related to our
Green's function can be expanded in terms of a
complete, orthogonal set of eigenfunctions.

The orthogonality condition for a set of
eigenfunctions is

d-q (83)

Here is the Kronecker delta and Ll_
is the normalization constant. The differential
equation the eigenfunctions of this problem must
satisfy is

K1 n is the separation constant and specific
va.nues of the separation constant for which the
above equation can be solved are the eigenvalues.

4.3 The Eigenfunction Expansion of the Scalar
Green's Function for Arbitrary Surface

Recombination Velocity

The scalar Green's function is now expanded
in a series of scalar eigenfunctions:

(85)

23
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This series is substituted into equation (A13),

noting that the coefficients are not functions
4~i of r. Multiplying by F.•w(r) integrating over

the volume, and using Eqs. (63) and (84), we find

* (86)

and (87)

where KY r DZ (8

This Green's function satisfies the reciprocity
condition since it is symmetrical in the source
and observation coordinates.

The semiconductor geometry is shown in
Figure 2. The p-n Junction is located at the
x=O plane and the origin of coordinates lies
at the center of this face. The rectangular
parallelepiped is bounded by the planes BxO,
x=a, y=b, yr-b, z=c, zZ-c.

The three dimensional rectangular coordin-
ate system is a separable system and the eigen-
function can be written as the product of three
factors:

FAJ~FX~LI~I~ *(89)

Each factor is the eigenfunction which satisfies
the boundary condition in one coordinate. Fur-
thermore Eq. (84) separates into three equations:

S U2. +KF- o ,(90)

where r is any index, 1, m or n.
The boundary conditions in the x-dlrection

are that pzo at x=o and x=a. This implies an
ohmic contact at xca and ohort-circuited condi-
tions at the x=O and x=a planes. The eigenfunction
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Fig. 2. The geometry and coordinate system for
the three dimensional semiconductor with finite
surface recombination velocity on the transverse
surfaces ycb, yz-b, z=c, zm-c. The p-n junction
is at the x=O boundary and an ohmic contact is
at the x=a boundary.
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which satisfies these conditions is

Ft s- (91)

On the y and z boundaries current moving
into the surface is proportional to the excess
hole density.l The constant of proportionality
is the surface recombination velocity a:

The coordinate u stands for either y or z and oL
stands for the y or z boundary surfaces. Using
the homogeneous form of Eq. (14), Eq. (92)
becomes

,Ja± $* (93)

Equations (90) and (93) have the following
solutions: In the y-direution the cosine and
sine eigenfunctions are

'A Coo sin . (94)

In the z-direction the cosine and sine eigen-
functions are

F'A Co 0 ;F,,= Sin'• (95)

The boundary condition, Eq. (93), becomes
for the cosine eigenfunctions:

,, p ( = tI , (96)

and for sine eigenfunctions:
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cot - (97)

The subscript r stands for either m or n, the
subscript p stands for eitherj or / , and a
stands for eithert b ortc, respectively. (The
word "respectively" in this expression means
that only the values (m,A.I ,I.b) or(n,V , *c)
can occur together in the above equations. We
assume that the surface recombination velocity
is the same for an opposite pair of surfaces.

Combining Eqs. (91), (94), and (95) the
elgenfunctions for the rectangular parallelepiped
semiconductor are

where all possible sine and cosine combinations
are taken. The symbols M and N stand for a y
or z index respectively. These eigenfunctions
are complete since they satisfy Eq. (14) and
the homogeneous boundary conditions. The
scalar Green's function Eq. (87) satisfies the
same boundary conditions as the eigenfunctions.
The eigenfunctions are orthogonal; from Eqs.
(83) and (98) we find

dv 17-2.~ (99)

and

cly =~ L1" 64m. 9,, (100)

while any mixing of the m,/4 and n,P give a
null integral. Since the eigenfunctions are
separable we can integrate the various coor-
dinate integrals separately:

(101)
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co P, .u coo NAL t 6r;& (.103)

!

• #i•"•' a "') ; • ¢" (104)

fCOOVU 5 ji 1 ~a C)LO (105)

The r stands for m or n Whilep stands for.A
or ).

Substituting Eq. (98) into (84), the
eigenvalues are

+9_ 10 (106)

If we let a, the x-dimension of the para-
llelepiped, go to infinity, the discrete sum
goes over to an integral and can be integrated.
To carry out this limit operation, Green's func-
tion Is written as

""A r) P 4 s r M ý i (107)

The variables I and A% take on the values Yia
and A&, respectively, and are put into Eq. (107).14
When a goes to infinity, Eq. (107) becomes

, (1O8)
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When we integrate equation (108), Green's
function becomes

(.109)

2 • (112)

LMN is defined by Eqs. (101), (103) and (104)
a- KKyMN by Eqs. (106) and (88). The plus signs
belong to the m,n indices, while the minus signs
to the,4,x) indices. This is the desired form
for the scalar Green's function for a rectangular
parallelepiped semiconductor when the x-dimension
goes to infinity. The assumption that a goes to
infinity means physically that the diffusion
length of the minority carriers is much less than
a. Therefore minority carriers injected at x=o
will recombine before they reach the contact at
x-a. This assumption is valid for p-n junction
diodes. In the case of transistors, a second
p-n junction is at the distance a, and in this
case, the diffusion length is much greater than
a.

Our solution is therefore directly appli-
cable to p-n junction diodes; transistors can be
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handled in the same general way, but a is kept
V0 finite and the boundary condition at a is

changed. For simplicity we confine this work
to the p-n junction diode and assume a is
infinite.

4.4 The Eigenfunction Expansion for the
Scalar Green's Function for Infinite

Surface Recombination Velocity

Green's function for the case of infinite
surface recombination velocity on the transverse
surfaces and zero hole density on the longitud-
inal surfaces is called the infinite s case. It
is convenient to change the coordinate system
from that of Figure 2 to that of Figure 3, in
which the origin is at one corner of the p-n
junction fase rather than at its center. To
designate that a symbol pertains to the case of
infinite a, we affix the superscript a* to the
symbol.

On the Jnugitudinal surfaces the boundary
conditions are not changed. On the transverse
surfaces s is infinite. From Eq. (93), we get

5 • (113)

Here a- is the u-boundary surface: 0, B for y
or 0, C for z. With s = , either p is zero
or Zp/a is infinite. The last relation
requires an infinite surface current and is
physically impossible. Therefore p is zero on
the surfaces which have infinite surface recom-
bination velocity. Thus the excess hole density
is zero on all surfaces.

Following the same procedure as for the
case of arbitrary s, we find

V= ZFZ.(.(' c- l~.)~((~lnII (114)
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II

Y x
tB

,9

0! V

Fig. 3. The geometry and coordinate system for
the three dimensional semiconductor with infin-
ite surface recombination velocity on the trans-
verse surfaces y=O, y=B, z=O, z=C. The p-n
Junction is on the x=O boundary and an ohmic
contact is on the x=a boundary.
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sin ail sin~ 1!ý (115)

, . , (116)
7

K'- + &7) (117)

Equation (114) is the scalar Green's function
for infinite surface recombination velocity on
the transverse surfaces.
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CHAPTER V

TENSOR GREEN'S FUNCTION FOR THE SEMICONDUCTOR

WITH A p-n JUNCTION

5.1 Formal Solution of the Diffusion Current
Density with the Tensor Green's Function

In deriving the noise from a p-n Junction
the vector inhomogeneous differential equation,
Eq. (36), must be solved; one method of solution
is with a tensor Green's function. The general
properties of tensor Green's fupotions are
reviewed in Appendix A.

We solve the inhomogeneous current density
equations (36) and (37) formally with the tensor
Green's function,r, defined by Eq. (A14). Equa-
tion (36) is postmultiplied with f while equation
(A14) is premultiplied with I and the two result-
ing expressions are subtracted. The following
tensor identities are used:

and V [ 10.T = r 'A' ) (.N.(•. .r. (119)

The resulting equation is integrated over the
volume using

SF = F -,A F (120)
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for any vector function F and for the idem-
factor 4, Eq. (AlO). The symbols r and ro are
"interchanged and the reciprocity condition, Eq.
(A22) is used. The current density is

jr .cA.*4J 1 (121)

5.2 Formal Vector Eigenfunction Expansion
of the Tensor Green's Function

In order to use Eq. (121) we must find an
explicit expression for the tensor Green's func-
tion. This is accomplished formally with a
complete, orthogonal series of vector eigen-
functions, J, . These vector eigenfunctions
must satisfy the equation

0 (122)

and the orthogonality condition

I?

We expand the tensor Green's function in
a series of these vector eigenfunctions,

r- 3,.SL(r.). (124)

This series is put into Eq. (A14) and both sides
f the resulting expression are multiplied by
e,'.'and integrated over the volume. Using Eqs.
123),(120), and (88) the vector coefficients

are
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Substituting Eq. (125) into (124) the tensor
Green's function becomes

lJ (r) • (126)

This is the formal expression for Green's ten-
sor in terms of a complete orthogonal set of
vector eigenfunctions.

5.3 Vector Eigenfunctionsl
4

The vector eigenfunction solutions of the
vector equation (36) are obtained from scalar
eigenfunction solutions of the corresponding
scalar eigenfunction equation (84). These vec-
tor eigenfunctions are written as

I 17,Z= L (127)

where L=ýCp(18

and X, Y, Z or o, •, are eigenfunction solu-
tions of equation (64); 1 is the vector normal
to the surface and w is a function of the coor-
dinate in the direction a, . The eigenvalues,
Klmn, and the relative magnitudes of X, Y, Z or
o,•' ,• are adjusted to satisfy the boundary

conditions.
In the p-n junction the diffusion current

is proportional to the gradient of the hole
density. Therefore a vector eigenfunction is
the gradient of a scalar eigenfunction. The
curl of these vector eigenfunctions is zero, and
M and N, Eqs. (127) and (128), are zero.

For an arbitrary surface recombination
velocity the vector eigenfunctions are
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_ (129)

where Flmn are defined by Eq. (98) Kjmn by (106)
and the boundary conditions by (965 and (97).
These eigenfunctions satisfy the differential
equation (84).

5.4 Non-orthogonality of the Vector
Elgenfunctions for Finite s

To investigate the orthogonality of the
vector eigenfunctions we write one of them
in component form:

JIM W + + (130)

whe; M refers to m orand Nto nori . Allposh±ble combinations of tle cosine and sine

factors are implied in each term. A component

of Timn is denoted by the coordinate written as
a superscript.

The orthogonality of the set of vector
eigenfunctions is determined from Eq. (123):
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To evaluate these integrals, Eqs. (102) to (105)
and the following expressions are used:

To ev1a thn (U to (132)

TOTS, CoS0,f

IP ;P7 (135)

&fl U C0Aut 0 (136)

The superscript plus is not written unless
there is a chance of ambiguity. Here r stands
for m or n,/0 stands for/a or L , and u for y
or z, respectively.

The components of Eq. (131) are now

fi a" 1 w S (137)
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The y component has two cases:
-I

Case 1: 2-.t,, MAMI, N-NI

•. c~~ .~,k' • (138)

Case 2: 1=41, MuMI, N-N'

h134M (D, . &..,t,.,.,. (139)

The z-component also has two cases:

Case 1: X=P, MuMI, NAN'

(D 9 (140)

Case 2: 1=1', MMI, N-N'

M refers to either m oru and N refers to n or
S/ . The Si, j are Kronecker deltas. When

two symbols are written in a column, the upper
symbol refers to either m or n and the lower one
to ," or V . The integrals in Eqs. (138) and
(i40) do not vanish even when MOM' or NON'; the
set of vector eigenfunctions is not orthogonal.
Therefore we are not able to construct a tensor
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Green's function from these vector eigenfunc-
tions.

5.5 Vector Eigenfunctions for Infinite
Surface Recombination Velocity

In the special case of infinite surface
recombination velocity a complete set of ortho-
gonal vector eigenfunctions can be derived for
the three dimensional p-n junction. These' eigen-
.functions are found from thM products of Eqs.41)
and (91) and the gradient operation of Eq. (i29

The orthogonality relation is proved from Eqs,

(142) and (12):

Here a, B, C are shown in Figure 3 and K1m• is
given by

W " K-"iW±t,+Kj~ t/(N~ (144)

5.6 Eigenfunction Expansion of the Tensor
Green's Function for Infinite

Surface Recombination
Velocity

Having found a complete set of orthogonal

vector eigenfunctions for the infinite surface
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recombination velocity case, we construct .a
tensor Green's function. Affixing the super-
script co onto the parameters in Eq. (126),
Green's tensor is

KKlmn is derived from Eqs. (144), (88), and (27):

K ( 4 (fr/C-).•m•,4& t /B)L +(l t, 4. Zw,/D. (146)

The tensor product of a vector elgenfunction pair

is f: 1: (147)
j; Jo J' J So

where the subscripts in the vector eigenfunc-
tions are not shown. The denominator of Eq.
(145) can be written as

0 CP -Z. 2 i(AmK,,)= (9cL )LK ( -( (148)

where /tmn, KK 1, K2 , K- , and Af are given
by Eqs. (143), 44S) (27),-[144), and (B34
respectively.

Using the abbreviations
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coS OXrM/e) -cr s Z j, (rru/a) S (149)

c~os (T rru. /a) - C ro sP,~(lTrL./e)'~Sro Y

where the subscript r stands for 1, m, or n
while u stands for x, y, or z respectively,
Green's tensor function for the infinite sur-
face recombination velocity case is given as
Equation (150) on page 42.

When the x dimension of the rectangular
parall~piped goes to infinity a technique aim-
ilar to that used in Section 4.3 transforms
F ' (r/ro) into Eq. (151) which is given on

page 43.
In Eq. (151) there are two classes of

components: one contains K-, obtained from
Eq. (144) with Z equal to W~o, while the other
contains K4m , Eq. (117). To understand the
meaning of the two classes of terms, let us
review the physical significance of the Green's
tensor function. Each tensor is composed of
nine components. When the three diagonal terms
are excited with Dirac delta functions, the
Green's tensor describes the state of the sys-
tem. This state depends on the properties and
the geometry of the medium and the sources.
For the semiconductor the properties appear as
the diffusion constant D and the time constant
T. One of the properties of the source is its
frequency.

The components containing ,Kn depend on
the properties of the medium and the frequency w
of the sources as well as on the geometry.
However, the terms containing K' depend only
on the geometry of the medium amn therefore can
contribute only an additive constant to our
final result. We have examined this constant
and found it without physical meaning.
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Therefore to save space we neglect the terms
depending on Koo in our further analysis.

•-. In the subsequent work xo>x and the upper
signs are used in Eq. (151). Te tensor Green's
f function for s- - and a-oo is given by Eq. (152)
on page 45. Equation (152) is the required
expression for the tensor Green's function for
the three dimensional p-n Junction with infinite
s on the transverse faces.
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CHAPTER VI

NOISE CURRENT SPECTRUM IN THE P-n JUNCTION

WITH INFINITE SURFACE RECOMBINATION

VELOCITY

6.1 Intioduction

We have derived explicit expressions for
the noise generators appearing in the Langevin
equations of the semiconductor, and for the
scalar and tensor Green's functions. We now
use Green's functions to sum the contributions
from the infinitesimal noise sources and derive
expressions for the total noise spectrum of the
p-n Junction. The recombination noise spectrum
is derived from the scalar hole density, Eq.
(82), and the scalar Green's function, Eq. (114).
The diffusion noise spectrum is found from the
vector diffusion current density, Eq. (121),
and the tensor Green's function, Eq. (152).

Since the recombination and diffusion
noise spectra are the result of independent
elementary processes, they are derived separ-
ately. These noise spectra are added together
to obtain the total noise spectrum.

We consider first the case of Infinite
surface recombination velocity because we have
been able to derive both the scalar and tensor
Green's functions for this case.

6.2 Recombination Noise Current Spectrum

Let us examine the surface integrals in
the expression for the hole density, Eq. (82):
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The subscript s denotes the contribution from
the surface integrals, and the superscript a
indicates that we are considering the case of
infinite surface recofbination velocity. Since
the excess hole density pO(ro) on all the sur-
faces equals zero for the boundary conditions
discussed in Section 4.4, the second term on the
right hand side of Eq. (153) is zero. Further-
more an examination of Eqs. (114) and (115)
shows that Go vanishes at the boundaries since

- X +X (154)

and F ra))a. 0•o .• (155)

In each of these expressions there are two
evaluation surfaces; each expression is to be
,evaluated separately at each surface. There-
fore, the first term on the right hand side of
Eq. 4153) is zero and there is no contribution
from the surfaces. Thus the excess hole den-
sity equation (82) becomes

p(r)f G' o (156)

The excess hole density is transformed to
current density at the x=0 plane with the
homogeneous form of Eq. (14), and the current
density is integrated over the x=O plane. The
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result is

=r .0 .• a a

ixl f jfS(r.) d Xdy. ZffG/ax/ ddDI. (157)

"Since S(r ) is not a function of the observa-
tion coordinatos, we got

where G6 is given by Eqs. (114), (115), and
(116). Substituting Eq. (158) into (157) the
current at the x=O plane is

I• (•) =(159)

From now on the fact that the current is in the
x-direction and is evaluated at the x-O plane
will not be shown. The subscript r designates
the recombination process.

A noise process is characterized by its
spectrum. To derive the recombination current
spectrum, w(IZ,(I)I' ), we use the relation
between the spectrum and ,he Fourier frequency
components given by Rige

tr .) Lim Trt I)*V ( f )/T, (160)

where T is the time interval. Substituting Eq.
(159) into (160), using the relation for the
recombination source spectrums,

48



NAVORD Report 5762

• ~~Li S (•,i•) S•r,4 jf £/4r(IJ •(ro)lL) • (r- t')dv8 ,( 161 )

and employing ff(1)6(K (162)

the recombination spectrum becomes

UA(trrh) = (163)

g, +

The symbolsw(|S 2), sO, and K• , are given
by Eqs. (65), (149), an• (iie). Dirac delta
function in Eq. (161) expresses the fact that
at each point of the semiconductor it is as-
sumed that the noise source is uncorrelated
with the noise sources at all other points.

The recombination source function, Eq.
(65), contains <pt(rD)> This quantity is
defined by Eqs. (Bll to (B13) and is made up
of two parts, the thermal equilibrium hole den-
sity <pt(ro)PN and the average excess hole
density <pt(ro)>E. Integrating the part of Eq.
(163) which contains the thermal equilibrium
hole density, the Nyquist current spectrum is
obtained:

a"j)=6 /r'P Ai n (: K (.164)

where At  and K mn are given by Eqs. (B34) and
(117) respectively.

The excess recombination noise spectrum
is derived by integrating the part of Eq. (165)
which contains the average excess hole density,
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Eq. (B21). Before integration this equation is

(165)

Integrating Eq. (165) yields

(166)

$~ KM

where the symbols A' Pb(), smo ' a nd Kf In
ard iven by Eqs. (B34), RB5, 24ý7, 117? an-
(B22) respectively. In deriving Eq.(166) the
following integral has been used:

40 r -r',{4r" r"r - zPr (167)

where only those values of r, r1, r" appear for
which the value of I rr'*r" i's odd. The symbol
r stands for m or n; 9 for B or C; and u for y
or z, respectively. Therefore in Eq. (1661
there appear only those values of m, min, ml and
n, n', ni for which the expressions Imtm*n*"I and
ntn'tn"I are odd.

50



NAVORD Report 5762

6.3 Diffusion Noise Current Spectrum for
Infinite Surface Recombination Velocity

The expression for the diffusion current
density is given by Eq. (121) with a super-
scripts. Since W.jW and k.wgo to zero at the
boundary, there is no contribution from the
boundaries. For the x component of the current
density, Eq. (121) becomes

+ (9 ±o (168)

To get the total diffusion current I( f) in the
x direction at the x=0 plane, Eq. (iB8) is
integrated over this plane. The result is

~ ~ 169)

Performing the integration at the xsO plane,
using Eq. (152), the diffusion current becomes

(170)

ia *'fvny a*w-N

where Smo and Cmo are given by Eq. (149) and SDt
are the u components of the diffusion sources.

The diffusion current spectrum is
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dvi

bT V '5., C-I C .1

Here we have used an equation similar to (160)
end the diffusion source upectrum given by

U., SD,. 5 DuL. - (172)

T
At an arbitrary point the diffusion sources in

the three orthogonal directions are Independent.
Furthermore, the diffusion sources at an arbit.-

rary point are assumed to be independent of all
other points.

In Eq. (171) the noise sources, Eq. (75),
contain the average hole density <pt)). As in
Section 6.2 the part of Eq. (171) which contains
the thermal equilibrium hole density gives the
Nyquist noise while the part which contains the
excess hole density gives the excess noise.

Integrating the Nyquist part of Eq. (171),
the Nyquist diffusion noise is

cc

where A0 and K~mn are from Eqs. (Bý4) and (117)
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respectively, and K~n is from Eq. (144) with
equal to zero.

The excess noise part of Eq. (171) is

Here Eq. (B21) is substituted £or<p•€(.)in (75),which in turn is put into (171).

Integrating Eq. (174) shows the excess dif-
fusion current spectrum to be

vdl1,\)- (A#.I"Lipoa/1() (175

here A•,p•)Km, and Kmnare given by Eqs.

•B•,(B5) , (1l7, and (B22). Here we used Eq.
167) ani the integral
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S). oC•.~oI...c44Li. - / ( r.*-,"V -, 'i-•" .'i")-'(, (176)
I-

where r is either m or n. In Eqs. .167) and
(176) only those values of r r', r appear for
which the expression Irtr'trt'is odd.

6.4 Total Nyquist Noise: Stochastic Theory
and Nyquist Law

The total noise spectrum calculated from
stochastic theory is composed of two parts:
the recombination curwent spectrum and the dif-
fusion current spectrum. Since the recombina-
tion and diffusion processes are independent
statistically, we add the spectral densities.
For the total Nyquist noise current spectrum
Eqs. (164) and (173) are summed to get

A_______0 (177)

From equations ý3) 022) and (117) we get n

~ ~ (178)

With Eq. (178), Eq. (177) becom-es

W ~ Z ý 11

Wit E r (78) E. 77 b4mo , (179)

04A

As a check on the above method, the Nyquist
noise current spectrum is calculated from the
conductance at the x-O plane. From the Nyquist
law~u the noise spec~trum is
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ýýIý -4KT G(180)

where G is the real part of the thermal equilib-
rium admittance of the p-n Junction. At thermal
equilibrium V0 is zero in the expression for the
admittance, E . (B33), and Eq. (180) is identi-
cal with Eq. (1"(9). Thus the result of the
stochastic analysis is correct, giving us con-
fidence in the method of tensor Green's func-
tions. We shall see in Chapter VII, on the
other hand, that the stochastic result obtained
by the use of scalar Green's functions does not
check the result obtained from the Nyquist law.

6.5 Total Excess Current Spectrum with

Infinite Surface Recombination
Velocity

Adding the excess recombination and the
excess diffusion current spectra, Eqs. (165) and
(175), the total noise spectrum is found to be

where AT, are given by Eqs.
(B34), (B5, ( , and . Here r represents
either m or n and only those values of r, r", r"
appear for which 1rtr'kr"1is odd.

It is interesting to see if the excess
spectrum is proportional to the steady current
flowing at x=O. The dc current density is
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derived from Eqs. (12) and (521). Integrating
over the x=O plane gives for total current

I-= LZqDp~.0) Arl'flj Y,.,., (182)

Comparing the do current with the excess
current spectrum, Eq. (181), the two relations
can be related. However, the factor of pro-
portionality is a complicated function of
frequency, semiconductor parameters, and geometry.

6.6 Divergence of the Expression
for the Nyquist Noise

Let us examine the noise spectra for con-
vergence at each frequency. The Nyquist current
spectrum, Eq. (17T), is converted into a double
integral and integrated. All terms in Eq. (177)
are positive, and we investigate the range for
large m and n. Making the transformations

and neglecting l/DT and w/D with respect to m
and n, the series in Eq. (17') becomes when Ax
and Ay go to zero

> T Il (L~ d 43 (184)

With the transformations

Y, Cos 6= , d% d (185)
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Eq. (184) becomes

> t AT' fd(-.$ >P %j Z Co_(186

Therefore w( 1121 )N becomes infinite.
To determine the physical significance of

this divergence we investigate the admittance
with V %0 at the x=O plane, since the Nyquist
current spectrum is proportional to its real
part. For arbitrary surface recombination vel-
ocity the admittance at the x=O plane is given
by Eq. (B28). The factors in the denominator
of the infinite series are each bounded and are
neglected for discussions of convergence. Fur-
thermore, from the boundary conditions Eqs. (96)
and (97)

ri h(, (187)

where r stands for m, n; M for b, c respectively.
Only for infinite surface recombination velocity
does Ngr always remain Iv/2 independent of r.
Otherwise AGr approaches zero as r goes to
infinity.

If we take r finite but so large thatAor is small, [, •÷AJ'7>)C(fl)" ÷i i/D] , and
the identity for large positive integers m and
n

+- (188)

the series in Eq. (B28) becomes
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As m and n individually go to infinity the
terms go to zero because [tis.)or (Ae8.) goes
to zero. The value of the input admittance is

7. finite except when AG is ir/2, when it is
infinite. When suoo Ehe surface of the semi-
conductor seems to be covered with a perfectly
conducting layer which short-circuits the semi-
conductor. Therefore the Nyquist noise current
spectrum becomes infinite when the surface
recombination velocity is infinite.

A convergent expression for the case of
arbitrary s can be written down directly from
the Nyquist Law, Eq. (180) and the real part of
the admittance, Eq. (B31). This is discussed
further in Chapter VII for the case of arbitrary
s. Now we examine this expression for the case
of large but finite s.

From the boundary conditions, Eqs. (96)
and (97),

ScA/ = ot tol 01,(190)
When le is large we can write Bx as 7

where (191)

where r is odd. Substituting Eq. (B31) into
(180), letting i be large and the dc voltage at
xvO be zero, we get for the range of small 8, ,

_________W ___ Z (192)

* I ~~X Cosi NDtF'4 c(r, (n//) 4 )/sr 1 ~~~Ds)LL /iI
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If we let sb/D and so/D become very large
while ,n and 4, remain small, Eq. (192) becomes
identical with the Nyquist current spectrum with
s=, Eq. (179); to make the two equations agree
the conversion factors between Figures 2 and 3
are used:

. B•Z • C• ¢.(193)

6.7 Convergence of the Series for the
Excess Noise Spectrum i

To discuss the convergence of the excessnoise spectrum, we Investigate Eq. (181). In
the denominator of this equation there are two•
factors which contain minus signs, one In m and
one in n. Taking the factor in m (identical
resul5• are obtained with n). the indices m, m,
and m"are related so that |m*mI mj"1 must be odd.
For the whole factor to be zero

Solving we get

7n * 4M o. (195)
Since zero is an even number, the factors cannot
vanish. Furthermore the factor in m is nega-
tive whenever m-m'*i".

The question of convergence of the excess
noise spectrum is a very difficult one to
answer. Converting the sum to an integral is
not permissible since some of the values of
r, r' and r" are not present. Furthermore only
conditional convergence and not absolute conver-
gence is required. Putting test values into the
series the denominator increases very much
faster than the numerator. It appears that the
sum converges rapidly, but a rigorous proof
would require numerical evaluation of the excess
noise spectrum.
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Equation (181) can be used to calculate
the excess current spectrum for infinite sur-
face recombination velocity. From the above
discussion of the Nyquist noise, we can expect
that Eq. (181) provides an upper bound for the
excess noise spectrum when the surface recom-
bination velocity is large but not infinite.

6.8 Contribution of Electron Density Fluctuation
in the p-Type Material

Our analysis has only considered hole
conduction in the n-region. Shockley7 has
shown that electron conduction in the p-region
is simply an additive effect to the hole cur-
rent. The noise resulting from the concentra-
tion fluctuations of electrons is statistically
independent of the hole fluctuations and the
analysis is similar to that made above. When
the p and n symbols in the expressions for the
hole fluctuations are interchanged and when the
values of D and i for electrons in p-type
material are used, the derived spectra pertain
to electron fluctu•tonsI in the p-type material.The total current spectrum is the sum of

the hole current spectrum and the electron cur-
rent spectrum.

6.9 Summary of Chapter VI

Using tensor and scalar Green's functions,
we have derived explicit expressions for the
thermal equilibrium noise spectrum, Eg. (179),
and the excess noise spectrum, Eq. (1 1), of the
p-n junction when the transverse surface recom-
bination velocity approaches infinity. In
actual practice the surface recombination
velocity is never infinite, but may be very
large. Since Eq. (180) is convergent, it
should be used to calculate the thermal noise
when the surface recombination velocity is large,
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but finite. The excess noise spectrum can be
evaluated from Eq. (181) and should give a
Zood upper bound for the noise when the sur-
face recombination velocity is large, but
finite.
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CHAPTER VII

NOISE IN A p-n JUNCTION WITH ARBITRARY

SURFACE RECOMBINATION VELOCITY

7.1 Introduction

In the discussion of the noise current
spectrum with an infinite surface recombination
velocity, we had a very Important check on our
work. We derived the Nyquist noise current
spectrum by two independent methods: the Nyquist
law using the input conductance and the stochas-
tic process theory using basic physical prin-
ciples. These spectra are identical. in this
chapter we get the current spectrum for the case of
finite surface recombination velocity. When we
oompare the current spectrum of the Nyquist
noise derived from the Nyquist law and from
stochastic theory, we find that only for small
values of surface recombination velocity do
the two methods agree. Since the stochastic
process method uses basic physical principles
and rigorous methods, we present it, but we do
not resolve the question of which result is
correct.

For the case of arbitrary surface recom-
bination velocity we use the rectangular coor-
dinate system shown in Figure 2 with the p-n
Junction at the xzO plane. The origin is at
the center of the p-n Junction.

To find the current spectrum for the
three dimensional p-n Junction, the excess
hole density p is derived with the aid of the
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scalar Green's function. This density p is
obtained from Eq. (82). Since the Green's func-
tion satisfies the same homogeneous boundary
conditions as the unknown function, Eqs. (96)
and (97), the surface integrals in Eq. (82) are
zero. For the surfaces x 0o0 and x^o-o this is
proved with a technique similar to that used in
Section 6.2.

The vanishing of the remaining surface
integrals is proved in the following manner.
They can be wijitten as

fQ) zJG '"* r(r.) NG1.f I (16

and the mixed boundary conditions, Eq. (93),
can be written as

;:K f (197)

where the symbol . is defined by

+. (198)

Green's function satisfies Eq. (197). To
prove this, Green's function, Eq. (109), is
written as

G rm [:,s ,uJ , (199)
r.i,N / u M

and is differentiated to get
S]~

where . r dnt / ,., de•noe/ , (200)

where r denotes m or n, /o denotes/,a or v and
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u. denotes y. or zo respectively. Eqs. (199)and (200) are evaluated at the boundaries with
the aid of the eigenfunction form of the mixed

, boundary condit~onq, Fqs. (96) and (.97). When
Swe compare the resulting equations, we Bee that
' Green's function satisfiesa Eq. (197).

Substituting Eq. (197) f'. p and a simi-
lar expression for 0O into Eq. (196), p(r)Ls is
found to be identioclly zero and Eq. (82) becomes

fS (.) GOr Ir.) 1 v.(201)

Here S(4)and G are given by Eqs. (35) and (109)
respectively.

7.2 Bulk Recombination Current Spectrum
for Finite Surface Recombination

Velocity

The recombination current spectrum deriv-

ation is exactly the same as that for the
infinite surface recombination velocity. The
Nyquist current spectrum is

w'(I14I = i'~ YL~~41 (202)

where A,B , L and K are given by Eqs.
(B20), (19T' and (Y5); and the aymbols
q and i are defined after equation (12).The excess current spectrum is

(203)
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where

E C f a+uC (20)4)

X~ ~~~_ [(,v. eAIA! d6 t 4 ý

crop Sro, c, and s.9, are defined by

(205)

where r stands for m or n; a for b or c; and uo
for yo or zo respectively. iob(O) is given by Eq.
(B5). The symbol KkImn is given by Eq. (B18)
and the other symbols are identified after Eq.

7.3 The Diffusion Current Spectrum for Finite
Surface Recombination Velocity

The diffusion current spectrum for the
finite transverse surface recombination velocity
requires a new approach. We reexamine the solu-
tion for the excess hole density, Eq. (201).
By transforming this equation the diffusion
noise source takes on the same form as that
derived in Chapter III. Gradients of the
scalar Green's function result from this trans-
formation.

We start the derivation of the diffusion
current spectrum with the solution for excess
hole density. The source function S is now S6,
Eq. (3), and Eq. (201) becomes

r'~' [f ( , G Vo (206)

b5



1.-" NAVORD Report 5762

The appearance of the Laplacian in the source
function makes it impossible to use the physical
source function, Eq. (75). We transform Eq.
(206) into

&I -f[ V,. -. .- fgp) ,v. G]4Av. (207)

with the vector identity

I[V. L V.Gqp)} - [V. p]G.(. (208)

and Gauss' theorem.lA

The surface integrals in Eq. (207) result
from the diffusion current to the transverse
surfaces of the semiconductor. This current is
caused by the surface recombination and is

It is important to note that the surface sources
did not enter prior to the transformation of Eq.
(207). The three volume integrals are due to
the volume diffusion.

In order to derive the diffusion current
spectrum we solve for the total diffusion cur-
rent, ID~f), in the x direction at the x-O plane.
When Eq. (20,') is written in component form and
integrated over the x-0 plane, the diffusion
current becomes

dV.. (209)
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Here p0 is substituted for p(r ). The symbols
A, 0 K and P are giv~n by Eqs. (B20),
(B19), (ll)r and (96ý respectively. The sym-
bols D and q are defined after Eq. (12). In
deriving Eq. (209) the following facts and equa.-
tions are used: the scalar Green's function is
zero at the planes x%0 and x=•o; Eq. (14)) in
Eq. (207) only Green's function depends on the
observation coordinates.

The diffusion current spectrum is derived
by substituting the diffusion current, Eq. (209),
into an equation similar to (160) and is

ffff A) 4 4 4

F (0 C C CS 4, a0, s ýi, j.

where the symb~ols r and srt are
defined by Eq. (205c whye the other symbols
are identified after Eq. (209). The factor two
in the surface integrals comes from the alge-
braic addition of the two equal uncorrelated
noise spectra produced by currents to opposite
transverse surfaces. In the derivation of Eq.
(210) the relation characterizing the surface
sources is

Lim lPS.Sw (211)
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while the relatio, characterizing the bulk
diffusion sources is

7 au (I (212)

In Eq. (211) u stands for yo or zo while in

Eq. (212) u. s~ands for xo, y0, or zrz;- denotes
any coordinate ¶xcept u . In Eq. (211) the
symbol w (I•' k)is giVen by Eq. (80) while in
Eq. (2.12 the symbol w (I -• ) is derived from
Eqs. (75), (60), and tRe homogeneous form of (14).

To evaluate the diffusion current spectrum
it is divided into Nyquist noise and excess
noise. For the Nyquist noise p is substituted
for <pt(r)) in Eq. (210) and ýhe equation
integrated, (213)

ud iX) =4Q2AADrF.YI-Y i9 IýAsj*bL'L

Kim

rr'

where the integrals Lr, Lr, and Lr are given
by Eqs. (132), (103), and (133) respectively;
when r=r', L". is replaced by Lr; s is the
surface recombination velocity. The other
symbols are identified after Eq. (209).

For the excess noise spectrum, N(r), Eq.
(B17), is substituted for(p(r))in Eq. (210).
Integrating the resulting equation, the excess
diffusion current spectriun is
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W(ItoII)E_ *4,czA 3 ()D (214)

on) in)1t~~mm'l P ,,m -n' F-CC , xF-r-CC'e

n Wn'"I4n

D Cl
The aymbols +and (oae given by Eqs.

5Ymb1~~9 ~flPb (or~
(204) and (B Symboligiven byEE

5sc is given by,•,,U dktaý <.
SCr 11c or, US4~ C 0.5pL (215)

(PAi ft f f4
C. 1 + O,5r*j Cr ~'br + -

x 4
where C and S are defined by equation
(205); Ee symbols are identified after
equation (209).

7.4 Total Nyquist Noise for Finite Surface
Recombination Velocity: Stochastic

Process Method and Nyquist
Law Method

The total Nyquist current spectrum deter-
mined by the stochastic process method equals
the algebraic sum of recombination current
spectrum, Eq. (202), and the diffusion noise
spectrwu, Eq. (213), and is
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W (I1& 4~,A K{~ 1,~ (21.6)

, (DO +jK D" L•o•• •
X L IL, n

Kf 'P-

Eq. 180, ad te iputconductance, E.(3)

XTE<. .,p, (</D)]• £ K 'In

Comparing Eqs. (226) and (217) we seethat the two current spectra are not the same.

The former has a triple infinite series while
the latter has a double infinite series. When
the parameters sb/D and sc/D become very small,
agreement is attained between the two expres-
sions for the Nyquist current spectrum. In this
case the i factors converge very rapidly, as
shown by Shockley, 7 and the first terms of the
series represent the Nyquist spectrum adequately.
For the usual p-n material I/D¶ is large with
respect to the %o values in the Kko factor,Eeq. (12).0

For small 5t/D values the current spect-
rum by both the stochastic process and the
Nyquist law methods is

w €#),= w(,-1i)N =4•'AkDj•[ K8oo (218)
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where

*f[K.J [4-(ilD [(q ) + -Si)(ý (219)I/ I
+ "+ I (Dv) + st('A' +)ff

Concerning the difference bebween thr
stochastic process spectrum and the Nyquist
law spectrum for large values of D we note
that the transformation giving Eq. (207),
which was made in order to use the physical
diffusion noise source, results in the gradient
operation on the scalar Green's function.
While this seems correct formally, it may be
that it throws the problem into the domain of
the tensor Grean's function. The original
reason for investigating the tensor Green's
function was to use the diffusion noise sources
without an additional transformation. Unfor-
tunately an explicit expression for the tensor
Green's function for the case of arbitrary
surface recombination velocity has not been
found. Therefore, we are not able to determine
whether the scalar method for the diffusion
spectrum is in error or whether the Nyquist
theorem is not general enough to handle noise
in a p-n junction with mixed boundary condi-
tions.

7.5 Total Excess Current Spectrum for
Finite Surface Recombination

Velocity

The total excess current spectrum for
arbitrary surface recombination velocity is
obtained by adding the excess current spectrum
for bulk recombination and for diffusion, Eqs.
(203) and (214) respectively. These two sta-
tistically independent spectra add algebraically,
and the total excess current spectrum is
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W (11'OE 4 4•'Ap,(OD (220)

E (n' (K,, +AC r1

ACSff),o p., i,, s

cko~ ~ ~ r" -V•, P)"CC3'X-"'

Let us relate the dc current in the x
direction at the x=O plane to the excess cur-
rent spectrum. The diffusion current denbity
in the x direction is derived from Eq. 017)
and the homogeneous Eq. (14). Integrating
this current density over the x=0 plane, the
total dc current, Idc, is

where the symbols A, 3' K , p M and
Lmn are given by Eqs. ( 0), (9),r(B18),
(96), (B5), and (lll) respectively; the sym-
bols D and q are defined after Eq. (12).

Comparing this do current with the
excess current spectrum, Eq. (220), we find a
relation between the quantities, but the factor
of proportionality is a complicated function .of
frequency, geometry, and semiconductor constants.
When s is small the excess noise spectrum, Eq.
(220), becomes

vvOITC)E=4 zA12 D[K*,00 .K 0 wD)' (222)

X K~' 1^ z" f e +K ;ooo
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and the dc current, Eq. (221), becomes

! Ldc-MAD• '• K o ,(223)
where K (D ) (A-'4 .C5/D. (224)

When
)7

wI(JII)E . 1/1) . (225)

This has the familiar form of the shot-effipt
phenomenon in a temperature-limited diode,i
except that the constant for the diode is two,
while Eq. (225) gives 8/3.

7.6 Spectrum of Electron Density Fluctuations
in p-Type Material

As in Section 6.8 the noise current
spectrum of the electron density fluctuations
in a p-type material is similar to the spectrum
of the hole density fluctuations in n-type
material. The derivation of the electron dens-
ity fluctuation spectrum is the same as that
described in Section 6.8. The total current
spectrum is again equal to the sum of the hole
and electron current spectra.

7.7 Summary of Chapter VII

Using scalar Green's functions we have
derived explicit expressions for the Nyquist
noise, Eq. (216), and the excess noise, Eq. (220),
for the case of arbitrary surface recombination.
Thip would appear to constitute a complete
solution to the three-dimensional p-n Junction
noise problem. However, because of the lack of
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agreement between our result for the thermal
equilibrium noise, Eq. (216), and the result
obtained from the Nyquist theorem, Eq. (217),
it is recommended that further study be madebefore complete reliance is placed on the
stochastic results.
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CHAPTER VIII

CURRENT SPECTRUM IN A TWO-DIMENSIONAL

SEMICONDUCTOR WITH A p-n JUNCTION

8.1 Introduction

In many noise experiments the semicon-
ductor sample has a two-dimensional nature.
The sample is several diffusion lengths in the
longitudinal or x dimension and for all practi-
cal purposes may be considered infinite in
this direction. In one of the transverse
directions, say the y direction, the filament
is narrow and the surface recombination velocity
is important. In the other transverse direction,
the filament is so wide that the effect of sur-
face recombination velocity is negligible. A
bias voltage across the p-n junction causes a
current to flow in the x direction.

Since there is no variation in the z
direction, the del-operator in Eqs. (34) to
(37) becomes

a A 1(226)

Except for this change the current spectrum is
derived with the technique used to determine
the spectrum of the three dimensional semicon-
ductor containing a p-n Junction.
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8.2 Two Dimensional Current •Spectrum for

Infinite Surface Recombination Velocity

The Nyquist noise current spectrum is

w()ND (,,(227)

where (228)

.11 wr4/in +/~1 ~l +(ri/1 /~

The Nyquist nolse spectrum derived with the
Nyquist law and the conductance of the two
dimensional p-n junction is the same as Eq.
(227).

The excess noise spectrum is

14.
- a~n(229)

where the only values of m, m", m" appearing
are those for which Im-m'-!mIII is odd. The
symbols pb(O) and A- are given by Eqs. (B5)
and (B34I), respectively; the symbols D, q and
T are defined after Eq. (12). The symbols Kkm
and KkIm are defined as

K "[(,/8)" +, I/DPy•" (231)

In two and three dimensions the current

spectra behave the same (see Section 6.6); the
Nyquiat current spectrum diverges, but the
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excess current spectrum appears to converge
rapidly. The excess current spectrum can be
used as an upper bound for large values of
surface recombination velocity. As in the
three dimensional case, the proportionality
between the excess noise spectrum, Eq. (229),
and the dc current at the x-O plane

I.

SKoo, /,", (232)

is very complicated.

8.3 Two Dimensional Current Spectrum with
Finite Surface Recombination Velocity

The Nyquist current spectrum obtained by
the stochastic process method is

(1 nII (233)

-m S

The Nyquist current spectrum obtained by the
Nyquist law and the input conductance method is

W(Ir'A = Fzig. Z r LmRKj<n)-(234)
The symbols A, L ,L , Lmm' and pm are given
by Eqs. (B20),(I"0), (iv), (132), and 096)
respectively; and the following expressions
define the remaining parameters:

Si skp)/(~L) (235)
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W.' b" . (236)

" •= V.-+ ,(237)

When sb/D becomes snmll, the Nyqui.stiil~i!!spectrum derived by the Nyquist law .and by the

8tochastic process method is

% -- - A, , (239)

whr (K,,4, 0) Dbb_ + , . (240)

In two dimensions as in three dimensions the
Nyquist current spectra, obtained by the sto-
chastic processes method and by the Nyquist law
method become the same only when sb/D is small.

The excess current spectrum with finite
surface recombination velocity is

4 ( 24,1 )+# A p • A • ,• . , ,. L °

t .2.. (,,,}

The symbols pj•(o)A.E"' and E("w are given by Eqs.
(B5), (204), and Y .5) respectively; the sym-
bols D, q, and T are defined after equation (12);
and the rest of the symbols are defined after
Eq. (234).
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The dc current is

Id, P"A2DEK KK, L. (242)

As in three dimensions, Section 7.5, a
complicated proportionality factor relates the
excess current spectrum and the dc current for
arbitrary surface recombination velocity. For
small sb/D the excess current spectrum is

w(Ir'lE = z . • ~AI •,V1G•-'" vhf')
+E= (•). % Db)_] a w_.]], (243)

+ [[(Dr)¾ s(Db)_'] .j- + )LD-')aJ '

4. (6 ~ Dr,+ [ (zt)-'+s (D)0 ' D

When sb/D is small and when (u.L/D)(< Kjo, the
excess noise spectrum becomes

w(Ir -,E 4Ag(OD ko. (244)

For small sb/D the dc current, Eq. (242),
becomes

LdC --- ](O)A f K.o (245)

Thus the relation between the excess current
spectrum and the dc current is

wVV am))• - . (246)

The contribution from the electron den-
sity fluctuations in p-type material is similar
to the three dimensional case, Section 6.8.
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phenomena are generally performed with thin

dimesioal eomery uit accratly.Experi-

fao reombnaton eloity Cetai gvelocty

grea~tly. Our results can be used to predict
the effect of such surface treatment on the
minority carrier noise of a p-n junction. For
the case of arbitrary surface recomibination
velocity, the Nyquist contribution to the noise
can be calculated from equation (234). i
An accurate approximation to the exceaz noise
contribution can be calculated from Eqs. (243)
and (229) f'or the limiting cases of small and
large values of s, respectively. For large
surface recombination velocity a triple infin-
ite sum is involved and the sum appears to
converge rapidly. For the case of small surface
recombination velocity the single term given in
Eq. (24j3) should be a good approximation. The
two dimensi onal solution should be useful for
comparing our theoretical results with experi-

ment.
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CHAPTER IX

SUMMARY AND CONCLUSIONS

9.1 Summary of Procedure

The noise in a semiconductor having a
p-n junction results from the fluctuations of
the minority carrier density. In the p-n
junction there are two different types of
minority carriers: holes in n-type material
and electrons in p-type material. The two
types of minority carriers behave similarly
and their current spectra are independent so
we discuss only the spectrum of the hole
density fluctuations.

The solution of the noise current
spectrum in a p-n junction is complicated if
only the Kolmogorov-Fokker-Planck (KFP) equa-
tions are considered. However, with the mod-
ified Langevin approach due to Petritz3 the
problem is tractable. This method uses the
KFP equations locally to derive the noise
sources and then uses the generalized Lange-
vin equation to transfer this noise to the
p-n junction terminal. In order to apply
1-1thi method, the inhomogeneous semiconductor
equations are determined using the transmis-
sion line-semiconductor analogy. From these
inhomogeneous equations the scalar differen-
tial equation for the hole density and its
associated scalar Green's function are found.
The bulk recombination current spectrum can
now be solved since the recombination
process has only a scalar source.
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The diffusion noise source has the
characteristics of a vector source and the
scalar Green's function is not directly applic-
able. In solving the two first order semicon-
ductor equations for the hole density, the
diffusion source is changed and cannot be
determined from stochastic process theory. We
use two methods to remove this difficulty. 1.
The vector current density equation and its
associated tensor Green's function are investi-
gated. 2. The scalar hole density equation is
transformed so that the diffusion sources can
be calculated from stochastic process theory.

To carry out the first approach, an
explicit expression for the tensor Green's
function is required. A complete set of ortho-
gonal vector eigenfunctions is necessary, but
is 'not found for an arbitrary surface recombin-
ation velocity on the transverse surfaces. The
desired set is found for the special case of
infinite surface recombination velocity on the
transverse surfaces. The tensor Green's func-
tion is determined explicitly and the diffusion
current spectrum is derived, Adding the recom-
bination and diffusion noise spectra, the total
current spectrum for infinite surface recombina-
tion velocity is determined. This spectrum
consists of two parts: the thermal equilibrium
Nyquist noise and the excess noise. Comparing
the Nyquist noise spectrum with that derived
with the Nyquist law, we find that both spectra
are the same and are infinite. The excess
noise spectrum appearks to be finite and is an
upper bound for the excess noise spectrum for
semiconductors with large surface recombination
velocity on the transverse surfaces.

Then to investigate the second method of
deriving the diffusion noise spectrum, the
scalar hole density equation is transformed by
means of the vector integration by parts and
the diffusion source takes the proper form. A
gradient of the scalar Green's function appears
which gives the Green's function a tensor char-
acteristic. The diffusion noise spectrum is
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found for arbitrary surface recombination
velocity on the transverse surfaces. Adding
the recombination and diffusion noise spectra,
the total noise spectrum is derived. The
Nyquist part of this 4ectrum is compared with
the Nyquist noise derived with the Nyquist law.
Agreement is found only for small surface
recombination velocity. The excess noise
spectrum appears to be finite.

9.2 Discussion of the Noise Current Spectra

The noise current spectrum depends on the
area transverse to the infinite direction; it
depends on the characteristics of the semicon-
ductor through the diffusion constants, the
time constants and the surface recombination
velocity; it depends on the geometric shape of
the semiconductor through the spacial harmonics.
The spectrum is flat at low frequencies. Only
for small surface recombination velocity and
low frequencies is there a simple proportional-
ity between the excess spectrum and the dc
longitudinal current at the p-n Junction.

If the noise spectrum is integrated over
the whole frequency range, an infinite noise
current results. This is equivalent to the
infinite energy from a black body which was
eliminated by Planck's quantum hypothesis.
This shows that our equations do not pertain to
very high frequencies where quantum conditions
become important,

It should be possible to compare our
results with experiment for the limiting cases
of large and small values of surface recom-
bination velocity. For three dimensions Eq.
(217) can be used to calculate the Nyquist
noise for large s, und Eq. (181) the excess
noise. For two dimensions the corresponding
equations are (234) and (229). For small s
Eqs. (218) and (222) and Eqs. (239) and (243)
are the Nyquist and excess noise contributions
for three and two dimensions respectively.
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Id ' 9.3 Conclusions

In this thesis we have contributed to the
development of the solution of a clan of noise
problems. The method due tn Petrhtur,4 has
bexen heralized; uoing Lawevints determinis-
Gretic equations, noise auuse- from rtorhasti-
process theroby, and scalar and tensor Gorenas
v efunctions we have solved the p-n junction noise
problem. This method can be applied to otherS~three dimensional noise problems. Furthermore,
the Green's functions derived can be used to
solve deterministic semiconductor problems.S~It would be desirable in the future to

Sextend the solution obtained with t-he tensor
Green's function to the case of arbttrari sur-
face recombination velocity. A aet of orthogonalvector eigenfunctions is required for this.
Since we have a complete set of independent,
non-degenerate eigenfunctions, it may be possible
to construct a set of orthogonal vector eigen-
functions by gaans of Schmidt's orthogonaliza-
tion proce ss.• With a set of orthogonal vector
eigenfunctions it may be possible to construct
a tensor Green's function and carry out the
solution of the problem.

Such a solution, in addlt'on to being of
interest in semiconductor noise theory, would
also shed some light on the disat[reement between
our stochastic result obtained tiy scalar Green's
function and the result obtaine:d by Nyquist's
law.
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APPENDIX A

DISCUSSION OF GFEEN'S FUNCTIONS

A.1 Forward and Backward Equat.ons

The semiconductor equations as functions of
time are affected by the direction of time. When
time increases, these equations are called the for-
ward equations; Eqs. (13) and (14) with variables
separated are

_____)-` -" (Al)

~Z~- -~ I 4hfA Y4A'~) (A2)

When time reverses, the semiconductor equations are
called the backward equations and are written as
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A.2 Equations for the Green's Functions
and Causality

Each inhomogeneous semiconductor equation, (Al)

to (A), defines an equation which must be satisfied
by its associated Green's function. The scalar for-
ward equation (Al) defines the equation for thp
scalar forward Green's function:

The scalar backward equation JA3) defines the equation~~ equtiion
for the scalar backward Green1. function:

The vector forward equation (A2) defines the equation
for the tensor forward Green's function:

The vector backward equation (A4) defines the
equation for the vector backward Green's function:

8i
vv. fl(i;r.;-r~t:• + -j•(w,-tI -. ti -- K!,l.'.- SI (•.v• Sit-to. (A8)
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Here -(r . •-% SV'-) (A-- Y (A9)

and 6(t-to) are the Dirac delta functions.14 Thesymbol Q is the idemfactorl and in dyadic notation is

4 1 1 t+ LL17,(Al0)
where I is the unit vector in the u-direction.

A Hreen's function is interpreted as the
response at the poirt r and time t to a unit impulse
source placed at r and to. Therefore the forward
Green's functions Satisfy the causality condition:

S(•I3= 0, i • •. ,(All)

while the backward or adjoint Green's functions satis-
fy the different causality condition:

'(r,-tjr,-Qt= 0 , i0 V't. (A12)

T denotes either the scalar or tensor Green's
functions.

A.3 The Frequency Domain

When the semiconductor equations and their asso-
ciated Green's functions are transformed to the
frequency domain, the forward and backward cquations
become the same. Using the technique of Section 3.2,
the scalar equations (Al) and (A3) become Eqs. (34)
and (35), while the vector equations become Eqs. (36)
and (37). Equations (A5) and (A6), which the scalar
Green's functions satisfy, transform to

v , (A13)

while Eqns. (A'() and (A8) which the tensor Green's
functions satisfy transform to
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Si ••-• - • (• .(A14)
The physical concept involved in the frequency

domain is that the sources vary with a steady-state
sinusoisal frequency. A steady-state source is iso-
tropic in time and the forward and backward equations
are the same. In the frequency domain for a linear
"medium the causality condition for the forward Green's
functions is

(A15)

and likewise for the backward Greents functions

(P I io( r, I iv)~ (A16)

A.4 Reciprocity Relations

Green's functions satisfy a reciprocal relation. 14

The scalar Green's function for a single frequency
satisfies the relation

This equation states that with a given harmonic
excitation, interchanging the source and the observa-
tion point does not affect the behavior of the system.

The tensor Green's function satisfies a recipro-
city rela on which is now derived (see Morse and
Feshbach, pP. 877-883). Equation(A14) can be
written as the operator equation

where the differential operator (aD is defined as
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a (A19)

This differential operator can be represented as the
continuous matrix C.(rlrl). With this matrix, Eq.
(A18) becomes

(A20)

Interchanging rows and columns and reversing the
positions of the factors of the product gives the
adjoint of Eq. (A2e):

Tre tensor Green's function for the adjoint operator
is the adjoint of the tensor Green's function

for a,.

r (rir.)(A22)

This is the reciprocity condition which the tensor
Green's function must obey.
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APPENDIX B

EXCESS CHARGE DENSITY AND p-n JUNCTION

INPUT ADMITTANCE

B.1 Definition of Terms

We use the scalar Green's function, Chapter IV,
'ito solve two problems: the excess hole density

resulting from a do voltage applied to the plane xO;
and the input admittance of the p-n Junction to an
alternating voltage applied at x%0.

In the excess hole density problem we investi-
gate the hole density at the xvO plane,. When no
voltage is applied at the xtO plane, the thermal
equilibrium hole density Pn exists threughout the
semiconductor. After applying the voltage V(O) at
the x()9 plane, the hole density at xoO increases to

(0) ~ - (0) t *s/ Bi)

where q is the electronic charge, k is Bltzmann's
constant, and T is the absolute tcmperature. The
symbol p denotes the excess hole density.

Putting V(O) equal to the sum of a large do
component V. and a very small ac component v.,

v(o) = Vo0 + v1 , (B2)

the exponential in equation (Bl) is expanded in a
power series in v1 . Keeping the first two terms, the
hole density is
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The excess hole density is made up of two parts:
Pb(0), the excess hole density from the dc voltage,
•Vo0; and pl(O), the excess hole density from the ac
voltage v1 . Therefore,

S(o) --p V, 10-T (B6)

where 4g V=1T) (B7)

The average value of the total hole density at
the xvO plane,<pt(O)), is found by taking the ensemble
average of pt(o) . Since the average value of the
alternating component pI(O) is zero, we get

.... - •(B8)

and define N It '"l (B9)

and (Pt (O),) (fto) , (BlO)

where the subscripts N and E denote the thermal equil-
ibrium and the excess part of the average hole density,
respectively.

When a voltage is applied at the xPO plane, an
excess hole density also appears throughout the whole
semiconductor and Eqs. (B8) to (BlO) become

< +(Bil)

Pin (B12)

< pt (r)> - ,,r. (B13)
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These equations refer to finite surface recombination
velocity s on the transverse surfaces. For the case
of infinite s we put c superscripts on the variables.

J3.2 Exress, Hole Density and lnputa Admittance
7 Let us evaluate the excess hole density in the

semiconductor with the p-n Junction. Assuming that
all sources are zero except on the x*O plane, Eq. (82)
reduces to

where no superscript and the c superscript stand for
finite and infinite s cases respectively.

For the finite s case (b G/1 xo) is calculated
from Eq. (109). When xo goes to zero, we get

•---•1 ~ Z F•4 (r°) Fmp4 (r) L M [x -X ~KV N I.] (B16)

Since p(ro) is constant over the xu.O plane, and Eq.
(B5) defines Pb(O), the excess dc hole density Is

pbr A~~M)115~eA((I(m) (817)

where K(8 ,/') 4 (B18)

ým ntnn) (B19)

A = 4 . (B2O)

and Lmn is given by Eq. (11.). This value of the
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excess ho~e density agrees with that given by
I• ~Shockley.

oc The infinite 5 case is similar to the finite s

case, and we get

rg~r) 16 (mn4ii ,IB -(i ,I)Ww, e~( X)(1321)

K/ ,mn.'

The input admittance to the p-n junction is
calculated by finding the total current in the x
direction at the x-0 plane and dividing by the ac
voltage v, applied at this plane. The current density
results from the homogeneous form of Eq. (14) and from
Eqs. (B14) and (B15). To get the total current we
integrate over the observation coordinates at the x*O
plane. With a constant source function (O), Eq.
(B6), at the x-O plane, the current in th x direction
is

tca -xa, ic 4', (B23)

jcJ C(

where/A is the mobility

0 ,Ik r (B25)

and the symbols p1 ', vl, G, and G* are given by Eqs.
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W(7), (B2), (109) and (114) respectively; the aymbols
q, k, and T are defined after Eq. (Bl); and D is
defined after Eq. (12).

For finite s the expression for avayk I.-o is

""--- FMNar.)FMN(r) '(MKV IMO. (B26)

Putting it into Eq. (B23) and defining the input
admittance at the xmO plane as

I (B27)

we get YýXco A 1,An Kl,, Lm"rm (B28)

where A, , K , , ad p 1 are defined by
Eqs. (B20),NBl9y, (17,"(1l'), (25) and (B7)
respectively.

To separate Y into its real and imaginary parts,
KR is so separated. Let

KIrrin = 04r- + i Hi)' (B29)

where H is any complex quantity and the subscripts rand i stand for real and imaginary parts respectively;
then

Using Eq. (B30), Eq. (B28) becomes

t" •"KK'•'" (B3)•.
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,4I where K 18in is defined by Eq. (BI8) and the other
symbols are defined after Eq. (B28). This is the
expressio. for admittance which was derived by
Shockley.(

In the infinite s case the input admittance is

y"I= =64f 4 Afrn rK (B32)

With the real and imaginary parts shown explicitly,
Eq. (B32) becomes

* K 7 j"IL+ -B3,

where/s , K~ and K• are given by Eqs. (B25),S( respectve and
(1-17) and(9 ee'tnesad

B- .s(B34)
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